Ping
Ping是测试网络联接状况以及信息包发送和接收状况非常有用的工具,是网络测试最
常用的命令。Ping向目标主机(地址)发送一个回送请求数据包,要求目标主机收到请求后给予答复,从而判断网络的响应时间和本机是否与目标主机(地址)联通。
如果执行Ping不成功,则可以预测故障出现在以下几个方面:网线故障,网络适配器配置不正确,IP地址不正确。如果执行Ping成功而网络仍无法使用,那么问题很可能出在网络系统的软件配置方面,Ping成功只能保证本机与目标主机间存在一条连通的物理路径。
命令格式:
ping IP地址或主机名 [-t] [-a] [-n count] [-l size]
参数含义:
-t不停地向目标主机发送数据;
-a 以IP地址格式来显示目标主机的网络地址 ;
-n count 指定要Ping多少次,具体次数由count来指定 ;
-l size 指定发送到目标主机的数据包的大小。
例如当您的机器不能访问Internet,首先您想确认是否是本地局域网的故障。假定局域网的代理服务器IP地址为202.168.0.1,您可以使用 Ping避免202.168.0.1命令查看本机是否和代理服务器联通。又如,测试本机的网卡是否正确安装的常用命令是ping 127.0.0.1。
Tracert
Tracert命令用来显示数据包到达目标主机所经过的路径,并显示到达每个节点的时间。命令功能同Ping类似,但它所获得的信息要比Ping命令详细得多,它把数据包所走的全部路径、节点的IP以及花费的时间都显示出来。该命令比较适用于大型网络。
命令格式:
tracert IP地址或主机名 [-d][-h maximumhops][-j host_list] [-w timeout]
参数含义:
-d 不解析目标主机的名字;
-h maximum_hops 指定搜索到目标地址的最大跳跃数;
-j host_list 按照主机列表中的地址释放源路由;
-w timeout 指定超时时间间隔,程序默认的时间单位是毫秒。
例如大家想要了解自己的计算机与目标主机www.cce.com.cn之间详细的传输路径信息,可以在MS-DOS方式输入tracertwww.cce.com.cn。
如果我们在Tracert命令后面加上一些参数,还可以检测到其他更详细的信息,例如使用参数-d,可以指定程序在跟踪主机的路径信息时,同时也解析目标主机的域名。
Netstat
Netstat命令可以帮助网络管理员了解网络的整体使用情况。它可以显示当前正在活动的网络连接的详细信息,例如显示网络连接、路由表和网络接口信息,可以统计目前总共有哪些网络连接正在运行。
利用命令参数,命令可以显示所有协议的使用状态,这些协议包括TCP协议、UDP协议以及IP协议等,另外还可以选择特定的协议并查看其具体信息,还能显示所有主机的端口号以及当前主机的详细路由信息。
命令格式:
netstat [-r] [-s] [-n] [-a]
参数含义:
-r 显示本机路由表的内容;
-s 显示每个协议的使用状态(包括TCP协议、UDP协议、IP协议);
-n 以数字表格形式显示地址和端口;
-a 显示所有主机的端口号。
Winipcfg
Winipcfg命令以窗口的形式显示IP协议的具体配置信息,命令可以显示网络适配器的物理地址、主机的IP地址、子网掩码以及默认网关等,还可以查看主机名、DNS服务器、节点类型等相关信息。其中网络适配器的物理地址在检测网络错误时非常有用。
命令格式:
winipcfg [/?] [/all]
参数含义:
/all 显示所有的有关IP地址的配置信息;
/batch [file] 将命令结果写入指定文件;
/renew_ all 重试所有网络适配器;
/release_all 释放所有网络适配器;
/renew N 复位网络适配器 N;
/release N 释放网络适配器 N。
在Microsoft的Windows 95及其以后的操作系统中,都可以运行以上命令。
2008年2月27日星期三
Boost regex Regular Express
[[:digit:]] 数字
[[:word:]] 字符加底划线
[:a-zA-Z:] 自定义字符集
\\\\ 一条\
Symbol Meaning
c Match the literal character c once, unless it is one of the special characters.
^ Match the beginning of a line.
. Match any character that isn't a newline.
$ Match the end of a line.
| Logical OR between expressions.
() Group subexpressions.
[] Define a character class.
* Match the preceding expression zero or more times.
+ Match the preceding expression one ore more times.
? Match the preceding expression zero or one time.
{n} Match the preceding expression n times.
{n,} Match the preceding expression at least n times.
{n, m} Match the preceding expression at least n times and at most m times.
d Match a digit.
D Match a character that is not a digit.
w Match an alpha character, including the underscore.
W Match a character that is not an alpha character.
s Match a whitespace character (any of t, n, r, or f).
S Match a non-whitespace character.
t Tab.
n Newline.
r Carriage return.
f Form feed.
m Escape m, where m is one of the metacharacters described above: ^, ., $, |, (), [], *, +, ?, , or /.
重要参考:
http://blog.chinaunix.net/u2/62093/showart_484483.html
[[:word:]] 字符加底划线
[:a-zA-Z:] 自定义字符集
\\\\ 一条\
Symbol Meaning
c Match the literal character c once, unless it is one of the special characters.
^ Match the beginning of a line.
. Match any character that isn't a newline.
$ Match the end of a line.
| Logical OR between expressions.
() Group subexpressions.
[] Define a character class.
* Match the preceding expression zero or more times.
+ Match the preceding expression one ore more times.
? Match the preceding expression zero or one time.
{n} Match the preceding expression n times.
{n,} Match the preceding expression at least n times.
{n, m} Match the preceding expression at least n times and at most m times.
d Match a digit.
D Match a character that is not a digit.
w Match an alpha character, including the underscore.
W Match a character that is not an alpha character.
s Match a whitespace character (any of t, n, r, or f).
S Match a non-whitespace character.
t Tab.
n Newline.
r Carriage return.
f Form feed.
m Escape m, where m is one of the metacharacters described above: ^, ., $, |, (), [], *, +, ?, , or /.
重要参考:
http://blog.chinaunix.net/u2/62093/showart_484483.html
2008年2月26日星期二
Boost regex backslash 问题
regex eps_change_blash("\"); //throw exception causes of a "bad_pattern".The problem is that
//have to escape the backslash once because of how C literals are interpreted
//and again because of how characters in regular expressions are interpreted.
Lösung:
regex eps_change_blash("\\");
or:
boost::regex expression("\", boost::regbase::literal);
Beispiel: use sourceDB(c:\backup\dbinfo.mdb) to repalce c:/apo_work/dbinfo.mdb
comes the problem "c:backupdbinfo.mdb"
Lösung: \\\\ for just once \
regex eps_change_blash("\"); //throw exception causes of a "bad_pattern".The problem is that
//have to escape the backslash once because of how C literals are interpreted
//and again because of how characters in regular expressions are interpreted.
Lösung:
regex eps_change_blash("\\");
or:
boost::regex expression("\", boost::regbase::literal);
Beispiel: use sourceDB(c:\backup\dbinfo.mdb) to repalce c:/apo_work/dbinfo.mdb
comes the problem "c:backupdbinfo.mdb"
Lösung: \\\\ for just once \
CString CDBinfoListCt::replaceSourceDB(CString s)
{
regex eps_sql_sourceDB("^.*\'c:\/apo_work\/dbinfo\.mdb\'$");
regex eps_sql_change_sourceDB("(c:/apo_work/dbinfo\.mdb)");
regex eps_change_blash("\\\\"); // \\\\ backslash for c, for boost... god!!!
cmatch what; // a array to store the matching string
std::string stdReplace;
CString sTmp;
CString sTmpDB;
if(regex_match(s, what, eps_sql_sourceDB))
{
stdReplace = (LPCTSTR)sourceDB;
stdReplace = boost::regex_replace(stdReplace,eps_change_blash,"\\\\\\\\");
sTmpDB.Format("%s",stdReplace.c_str());
sTmp.Format("%s",what[0]);
stdReplace = (LPCTSTR)sTmp;
stdReplace = boost::regex_replace(stdReplace,eps_sql_change_sourceDB,(LPCTSTR)sTmpDB);
sTmp.Format("%s",stdReplace.c_str());
return sTmp;
}
else
{
return s;
}
}
2008年2月7日星期四
std::string,char,Cstring
CString <--> std::string
CString sString
std::string stdString;
//
stdString = (LPCTSTR)sString;
//
sString = stdString.c_str();
sString = stdString.data();
//string 转换为 char 型
char* str = strdup ( stdString.c_str() );
cout << str << endl;
char 转换为 string 型
char* str = "char 转换为 string 型";
stdString = str;
CString sString
std::string stdString;
//
stdString = (LPCTSTR)sString;
//
sString = stdString.c_str();
sString = stdString.data();
//string 转换为 char 型
char* str = strdup ( stdString.c_str() );
cout << str << endl;
char 转换为 string 型
char* str = "char 转换为 string 型";
stdString = str;
2008年2月5日星期二
VC++ 日期格式
函数strftime()的操作有些类似于sprintf():识别以百分号(%)开始的格式命令集合,格式化输出结果放在一个字符串中。格式化命令说明串strDest中各种日期和时间信息的确切表示方法。格式串中的其他字符原样放进串中。格式命令列在下面,它们是区分大小写的。
%a 星期几的简写
%A 星期几的全称
%b 月分的简写
%B 月份的全称
%c 标准的日期的时间串
%C 年份的后两位数字
%d 十进制表示的每月的第几天
%D 月/天/年
%e 在两字符域中,十进制表示的每月的第几天
%F 年-月-日
%g 年份的后两位数字,使用基于周的年
%G 年分,使用基于周的年
%h 简写的月份名
%H 24小时制的小时
%I 12小时制的小时
%j 十进制表示的每年的第几天
%m 十进制表示的月份
%M 十时制表示的分钟数
%n 新行符
%p 本地的AM或PM的等价显示
%r 12小时的时间
%R 显示小时和分钟:hh:mm
%S 十进制的秒数
%t 水平制表符
%T 显示时分秒:hh:mm:ss
%u 每周的第几天,星期一为第一天 (值从0到6,星期一为0)
%U 第年的第几周,把星期日做为第一天(值从0到53)
%V 每年的第几周,使用基于周的年
%w 十进制表示的星期几(值从0到6,星期天为0)
%W 每年的第几周,把星期一做为第一天(值从0到53)
%x 标准的日期串
%X 标准的时间串
%y 不带世纪的十进制年份(值从0到99)
%Y 带世纪部分的十进制年份
%z,%Z 时区名称,如果不能得到时区名称则返回空字符。
%% 百分号
%a 星期几的简写
%A 星期几的全称
%b 月分的简写
%B 月份的全称
%c 标准的日期的时间串
%C 年份的后两位数字
%d 十进制表示的每月的第几天
%D 月/天/年
%e 在两字符域中,十进制表示的每月的第几天
%F 年-月-日
%g 年份的后两位数字,使用基于周的年
%G 年分,使用基于周的年
%h 简写的月份名
%H 24小时制的小时
%I 12小时制的小时
%j 十进制表示的每年的第几天
%m 十进制表示的月份
%M 十时制表示的分钟数
%n 新行符
%p 本地的AM或PM的等价显示
%r 12小时的时间
%R 显示小时和分钟:hh:mm
%S 十进制的秒数
%t 水平制表符
%T 显示时分秒:hh:mm:ss
%u 每周的第几天,星期一为第一天 (值从0到6,星期一为0)
%U 第年的第几周,把星期日做为第一天(值从0到53)
%V 每年的第几周,使用基于周的年
%w 十进制表示的星期几(值从0到6,星期天为0)
%W 每年的第几周,把星期一做为第一天(值从0到53)
%x 标准的日期串
%X 标准的时间串
%y 不带世纪的十进制年份(值从0到99)
%Y 带世纪部分的十进制年份
%z,%Z 时区名称,如果不能得到时区名称则返回空字符。
%% 百分号
DAO问题: Unrecognized database format
If you are linking with the MFC DLL, you can specify that you want MFC to use DAO 3.6 by inserting the following line of code before you open an Access 2000 database:
Insert this line in the CYourApp::Initinstance() function of your program.
If you are building with the static MFC libraries, following are the steps to get static builds of MFC to use DAO 3.6:
AfxGetModuleState()->m_dwVersion = 0x0601;
Insert this line in the CYourApp::Initinstance() function of your program.
If you are building with the static MFC libraries, following are the steps to get static builds of MFC to use DAO 3.6:
1. Modify the Daocore.cpp file in the MFC SRC directory. You will receive the following comment:// Determine whether to use DAO 3.6, 3.5, or 3.0
// Use DAO 3.0 if DLL build and not built with MFC 4.21 or later
// Use DAO 3.6 if MFC 6.01 or later
// otherwise, DAO 3.5
Add the following lines:#undef _MFC_VER
#define _MFC_VER 0x0601
2. Rebuild the library for the variant you need. For example, to build the static MFC library, debug version, non-Unicode, with no browser files use the following command at the command prompt in the MFC\SRC folder:
nmake DEBUG=1
for release:
nmake DEBUG=0
for unicode builds:
nmake DEBUG=1 UNICODE=1
nmake DEBUG=0 UNICODE=1
加入boost/regex.hpp库后静态编译通不过的问题--LNK2005 产生原因及解决方法
许多Visual C++的使用者都碰到过LNK2005:symbol already defined和LNK1169:one or more multiply defined symbols found这样的链接错误,而且通常是在使用第三方库时遇到的。对于这个问题,有的朋友可能不知其然,而有的朋友可能知其然却不知其所以然,那么本文就试图为大家彻底解开关于它的种种疑惑。
大家都知道,从C/C++源程序到可执行文件要经历两个阶段:(1)编译器将源文件编译成汇编代码,然后由汇编器(assembler)翻译成机器指令 (再加上其它相关信息)后输出到一个个目标文件(object file,VC的编译器编译出的目标文件默认的后缀名是.obj)中;(2)链接器(linker)将一个个的目标文件(或许还会有若干程序库)链接在一起生成一个完整的可执行文件。
编译器编译源文件时会把源文件的全局符号(global symbol)分成强(strong)和弱(weak)两类传给汇编器,而随后汇编器则将强弱信息编码并保存在目标文件的符号表中。那么何谓强弱呢?编译器认为函数与初始化了的全局变量都是强符号,而未初始化的全局变量则成了弱符号。比如有这么个源文件:
其中main、buf是强符号,p是弱符号,而errorno则非强非弱,因为它只是个外部变量的使用声明。
有了强弱符号的概念,我们就可以看看链接器是如何处理与选择被多次定义过的全局符号:
由上可知多个目标文件不能重复定义同名的函数与初始化了的全局变量,否则必然导致LNK2005和LNK1169两种链接错误。可是,有的时候我们并没有在自己的程序中发现这样的重定义现象,却也遇到了此种链接错误,这又是何解?嗯,问题稍微有点儿复杂,容我慢慢道来。
众所周知,ANSI C/C++ 定义了相当多的标准函数,而它们又分布在许多不同的目标文件中,如果直接以目标文件的形式提供给程序员使用的话,就需要他们确切地知道哪个函数存在于哪个目标文件中,并且在链接时显式地指定目标文件名才能成功地生成可执行文件,显然这是一个巨大的负担。所以C语言提供了一种将多个目标文件打包成一个文件的机制,这就是静态程序库(static library)。开发者在链接时只需指定程序库的文件名,链接器就会自动到程序库中寻找那些应用程序确实用到的目标模块,并把(且只把)它们从库中拷贝出来参与构建可执行文件。几乎所有的C/C++开发系统都会把标准函数打包成标准库提供给开发者使用(有不这么做的吗?)。
程序库为开发者带来了方便,但同时也是某些混乱的根源。我们来看看链接器是如何解析(resolve)对程序库的引用的。
在符号解析(symbol resolution)阶段,链接器按照所有目标文件和库文件出现在命令行中的顺序从左至右依次扫描它们,在此期间它要维护若干个集合:(1)集合E是将被合并到一起组成可执行文件的所有目标文件集合;(2)集合U是未解析符号(unresolved symbols,比如已经被引用但是还未被定义的符号)的集合;(3)集合D是所有之前已被加入到E的目标文件定义的符号集合。一开始,E、U、D都是空的。
VC带的编译器名字叫cl.exe,它有这么几个与标准程序库有关的选项: /ML、/MLd、/MT、/MTd、/MD、/MDd。这些选项告诉编译器应用程序想使用什么版本的C标准程序库。/ML(缺省选项)对应单线程静态版的标准程序库(libc.lib);/MT对应多线程静态版标准库(libcmt.lib),此时编译器会自动定义_MT宏;/MD对应多线程DLL版 (导入库msvcrt.lib,DLL是msvcrt.dll),编译器自动定义_MT和_DLL两个宏。后面加d的选项都会让编译器自动多定义一个 _DEBUG宏,表示要使用对应标准库的调试版,因此/MLd对应调试版单线程静态标准库(libcd.lib),/MTd对应调试版多线程静态标准库 (libcmtd.lib),/MDd对应调试版多线程DLL标准库(导入库msvcrtd.lib,DLL是msvcrtd.dll)。虽然我们的确在编译时明白无误地告诉了编译器应用程序希望使用什么版本的标准库,可是当编译器干完了活,轮到链接器开工时它又如何得知一个个目标文件到底在思念谁?为了传递相思,我们的编译器就干了点秘密的勾当。在cl编译出的目标文件中会有一个专门的区域(关心这个区域到底在文件中什么地方的朋友可以参考COFF和 PE文件格式)存放一些指导链接器如何工作的信息,其中有一种就叫缺省库(default library),这些信息指定了一个或多个库文件名,告诉链接器在扫描的时候也把它们加入到输入文件列表中(当然顺序位于在命令行中被指定的输入文件之后)。说到这里,我们先来做个小实验。写个顶顶简单的程序,然后保存为main.c :
用下面这个命令编译main.c(什么?你从不用命令行来编译程序?这个......) :
/c是告诉cl只编译源文件,不用链接。因为/ML是缺省选项,所以上述命令也相当于: cl /c /ML main.c 。如果没什么问题的话(要出了问题才是活见鬼!当然除非你的环境变量没有设置好,这时你应该去VC的bin目录下找到vcvars32.bat文件然后运行它。),当前目录下会出现一个main.obj文件,这就是我们可爱的目标文件。随便用一个文本编辑器打开它(是的,文本编辑器,大胆地去做别害怕),搜索"defaultlib"字符串,通常你就会看到这样的东西: "-defaultlib:LIBC -defaultlib:OLDNAMES"。啊哈,没错,这就
是保存在目标文件中的缺省库信息。我们的目标文件显然指定了两个缺省库,一个是单线程静态版标准库libc.lib(这与/ML选项相符),另外一个是oldnames.lib(它是为了兼容微软以前的C/C++开发系统)。
VC的链接器是link.exe,因为main.obj保存了缺省库信息,所以可以用
或者
来生成可执行文件main.exe,这两个命令是等价的。但是如果你用
的话,链接器会给出一个警告: "warning LNK4098: defaultlib "LIBC" conflicts with use of other libs; use /NODEFAULTLIB:library",因为你显式指定的标准库版本与目标文件的缺省值不一致。通常来说,应该保证链接器合并的所有目标文件指定的缺省标准库版本一致,否则编译器一定会给出上面的警告,而LNK2005和LNK1169链接错误则有时会出现有时不会。那么这个有时到底是什么时候?呵呵,别着急,下面的一切正是为喜欢追根究底的你准备的。
建一个源文件,就叫mylib.c,内容如下:
用
命令编译,注意/MLd选项是指定libcd.lib为默认标准库。lib.exe是VC自带的用于将目标文件打包成程序库的命令,所以我们可以用
将mylib.obj打包成库,输出的库文件名是my.lib。接下来把main.c改成:
用
编译,然后用
进行链接。这个命令能够成功地生成main.exe而不会产生LNK2005和LNK1169 链接错误,你仅仅是得到了一条警告信息:"warning LNK4098: defaultlib "LIBCD" conflicts with use of other libs; use /NODEFAULTLIB:library"。我们根据前文所述的扫描规则来分析一下链接器此时做了些啥。
一开始E、U、D都是空集,链接器首先扫描到main.obj,把它加入E集合,同时把未解析的foo加入U,把main加入D,而且因为 main.obj的默认标准库是libc.lib,所以它被加入到当前输入文件列表的末尾。接着扫描my.lib,因为这是个库,所以会拿当前U中的所有符号(当然现在就一个foo)与my.lib中的所有目标模块(当然也只有一个mylib.obj)依次匹配,看是否有模块定义了U中的符号。结果 mylib.obj确实定义了foo,于是它被加入到E,foo从U转移到D,mylib.obj引用的printf加入到U,同样地, mylib.obj指定的默认标准库是libcd.lib,它也被加到当前输入文件列表的末尾(在libc.lib的后面)。不断地在my.lib库的各模块上进行迭代以匹配U中的符号,直到U、D都不再变化。很明显,现在就已经到达了这么一个不动点,所以接着扫描下一个输入文件,就是libc.lib。链接器发现libc.lib里的printf.obj里定义有printf,于是printf从U移到D,而printf.obj被加入到E,它定义的所有符号加入到D,它里头的未解析符号加入到U。链接器还会把每个程序都要用到的一些初始化操作所在的目标模块(比如crt0.obj等)及它们所引用的模块(比如malloc.obj、free.obj等)自动加入到E中,并更新U和D以反应这个变化。事实上,标准库各目标模块里的未解析符号都可以在库内其它模块中找到定义,因此当链接器处理完libc.lib时,U一定是空的。最后处理libcd.lib,因为此时U已经为空,所以链接器会抛弃它里面的所有目标模块从而结束扫描,然后合并E中的目标模块并输出可执行文件。
上文描述了虽然各目标模块指定了不同版本的缺省标准库但仍然链接成功的例子,接下来你将目睹因为这种不严谨而导致的悲惨失败。
修改mylib.c成这个样子:
其中_malloc_dbg不是ANSI C的标准库函数,它是VC标准库提供的malloc的调试版,与相关函数配套能帮助开发者抓各种内存错误。使用它一定要定义_DEBUG宏,否则预处理器会把它自动转为malloc。继续用
编译打包。当再次用
进行链接时,我们看到了什么?天哪,一堆的LNK2005加上个贵为"fatal error"的LNK1169垫底,当然还少不了那个LNK4098。链接器是不是疯了?不,你冤枉可怜的链接器了,我拍胸脯保证它可是一直在尽心尽责地照章办事。
一开始E、U、D为空,链接器扫描main.obj,把它加入E,把foo加入U,把main加入D,把libc.lib加入到当前输入文件列表的末尾。接着扫描my.lib,foo从U转移到D,_malloc_dbg加入到U,libcd.lib加到当前输入文件列表的尾部。然后扫描 libc.lib,这时会发现libc.lib里任何一个目标模块都没有定义_malloc_dbg(它只在调试版的标准库中存在),所以不会有任何一个模块因为_malloc_dbg而加入E,但是每个程序都要用到的初始化模块(如crt0.obj等)及它们所引用的模块(比如malloc.obj、 free.obj等)还是会自动加入到E中,同时U和D被更新以反应这个变化。当链接器处理完libc.lib时,U只剩_malloc_dbg这一个符号。最后处理libcd.lib,发现dbgheap.obj定义了_malloc_dbg,于是dbgheap.obj加入到E,它里头的未解析符号加入U,它定义的所有其它符号也加入D,这时灾难便来了。之前malloc等符号已经在D中(随着libc.lib里的malloc.obj加入E而加入的),而dbgheap.obj又定义了包括malloc在内的许多同名符号,这引发了重定义冲突,链接器只好中断工作并报告错误。
现在我们该知道,链接器完全没有责任,责任在我们自己的身上。是我们粗心地把缺省标准库版本不一致的目标文件(main.obj)与程序库 (my.lib)链接起来,导致了大灾难。解决办法很简单,要么用/MLd选项来重编译main.c;要么用/ML选项重编译mylib.c。
在上述例子中,我们拥有库my.lib的源代码(mylib.c),所以可以用不同的选项重新编译这些源代码并再次打包。可如果使用的是第三方的库,它并没有提供源代码,那么我们就只有改变自己程序的编译选项来适应这些库了。但是如何知道库中目标模块指定的默认库呢?其实VC提供的一个小工具便可以完成任务,这就是dumpbin.exe。运行下面这个命令
然后在输出中找那些"Linker Directives"引导的信息,你一定会发现每一处这样的信息都会包含若干个类似"-defaultlib:XXXX"这样的字符串,其中XXXX便代表目标模块指定的缺省库名。
知道了第三方库指定的默认标准库,再用合适的选项编译我们的应用程序,就可以避免LNK2005和LNK1169 链接错误。喜欢IDE的朋友,你一样可以到 "Project属性" -> "C/C++" -> "代码生成(code generation)" -> "运行时库(run-time library)" 项下设置应用程序的默认标准库版本,这与命令行选项的效果是一样的。
终极解决办法:
来源:LNK2005 产生原因及解决方法-相当详细!(转载)
大家都知道,从C/C++源程序到可执行文件要经历两个阶段:(1)编译器将源文件编译成汇编代码,然后由汇编器(assembler)翻译成机器指令 (再加上其它相关信息)后输出到一个个目标文件(object file,VC的编译器编译出的目标文件默认的后缀名是.obj)中;(2)链接器(linker)将一个个的目标文件(或许还会有若干程序库)链接在一起生成一个完整的可执行文件。
编译器编译源文件时会把源文件的全局符号(global symbol)分成强(strong)和弱(weak)两类传给汇编器,而随后汇编器则将强弱信息编码并保存在目标文件的符号表中。那么何谓强弱呢?编译器认为函数与初始化了的全局变量都是强符号,而未初始化的全局变量则成了弱符号。比如有这么个源文件:
extern int errorno;
int buf[2] = {1,2};
int *p;
int main()
{
return 0;
}
其中main、buf是强符号,p是弱符号,而errorno则非强非弱,因为它只是个外部变量的使用声明。
有了强弱符号的概念,我们就可以看看链接器是如何处理与选择被多次定义过的全局符号:
规则1: 不允许强符号被多次定义(即不同的目标文件中不能有同名的强符号);
规则2: 如果一个符号在某个目标文件中是强符号,在其它文件中都是弱符号,那么选择强符号;
规则3: 如果一个符号在所有目标文件中都是弱符号,那么选择其中任意一个;
由上可知多个目标文件不能重复定义同名的函数与初始化了的全局变量,否则必然导致LNK2005和LNK1169两种链接错误。可是,有的时候我们并没有在自己的程序中发现这样的重定义现象,却也遇到了此种链接错误,这又是何解?嗯,问题稍微有点儿复杂,容我慢慢道来。
众所周知,ANSI C/C++ 定义了相当多的标准函数,而它们又分布在许多不同的目标文件中,如果直接以目标文件的形式提供给程序员使用的话,就需要他们确切地知道哪个函数存在于哪个目标文件中,并且在链接时显式地指定目标文件名才能成功地生成可执行文件,显然这是一个巨大的负担。所以C语言提供了一种将多个目标文件打包成一个文件的机制,这就是静态程序库(static library)。开发者在链接时只需指定程序库的文件名,链接器就会自动到程序库中寻找那些应用程序确实用到的目标模块,并把(且只把)它们从库中拷贝出来参与构建可执行文件。几乎所有的C/C++开发系统都会把标准函数打包成标准库提供给开发者使用(有不这么做的吗?)。
程序库为开发者带来了方便,但同时也是某些混乱的根源。我们来看看链接器是如何解析(resolve)对程序库的引用的。
在符号解析(symbol resolution)阶段,链接器按照所有目标文件和库文件出现在命令行中的顺序从左至右依次扫描它们,在此期间它要维护若干个集合:(1)集合E是将被合并到一起组成可执行文件的所有目标文件集合;(2)集合U是未解析符号(unresolved symbols,比如已经被引用但是还未被定义的符号)的集合;(3)集合D是所有之前已被加入到E的目标文件定义的符号集合。一开始,E、U、D都是空的。
(1): 对命令行中的每一个输入文件f,链接器确定它是目标文件还是库文件,如果它是目标文件,就把f加入到E,并把f中未解析的符号和已定义的符号分别加入到U、D集合中,然后处理下一个输入文件。
(2): 如果f是一个库文件,链接器会尝试把U中的所有未解析符号与f中各目标模块定义的符号进行匹配。如果某个目标模块m定义了一个U中的未解析符号,那么就把 m加入到E中,并把m中未解析的符号和已定义的符号分别加入到U、D集合中。不断地对f中的所有目标模块重复这个过程直至到达一个不动点(fixed point),此时U和D不再变化。而那些未加入到E中的f里的目标模块就被简单地丢弃,链接器继续处理下一输入文件。
(3): 如果处理过程中往D加入一个已存在的符号,或者当扫描完所有输入文件时U非空,链接器报错并停止动作。否则,它把E中的所有目标文件合并在一起生成可执行文件。
VC带的编译器名字叫cl.exe,它有这么几个与标准程序库有关的选项: /ML、/MLd、/MT、/MTd、/MD、/MDd。这些选项告诉编译器应用程序想使用什么版本的C标准程序库。/ML(缺省选项)对应单线程静态版的标准程序库(libc.lib);/MT对应多线程静态版标准库(libcmt.lib),此时编译器会自动定义_MT宏;/MD对应多线程DLL版 (导入库msvcrt.lib,DLL是msvcrt.dll),编译器自动定义_MT和_DLL两个宏。后面加d的选项都会让编译器自动多定义一个 _DEBUG宏,表示要使用对应标准库的调试版,因此/MLd对应调试版单线程静态标准库(libcd.lib),/MTd对应调试版多线程静态标准库 (libcmtd.lib),/MDd对应调试版多线程DLL标准库(导入库msvcrtd.lib,DLL是msvcrtd.dll)。虽然我们的确在编译时明白无误地告诉了编译器应用程序希望使用什么版本的标准库,可是当编译器干完了活,轮到链接器开工时它又如何得知一个个目标文件到底在思念谁?为了传递相思,我们的编译器就干了点秘密的勾当。在cl编译出的目标文件中会有一个专门的区域(关心这个区域到底在文件中什么地方的朋友可以参考COFF和 PE文件格式)存放一些指导链接器如何工作的信息,其中有一种就叫缺省库(default library),这些信息指定了一个或多个库文件名,告诉链接器在扫描的时候也把它们加入到输入文件列表中(当然顺序位于在命令行中被指定的输入文件之后)。说到这里,我们先来做个小实验。写个顶顶简单的程序,然后保存为main.c :
/* main.c */
int main() { return 0; }
用下面这个命令编译main.c(什么?你从不用命令行来编译程序?这个......) :
cl /c main.c
/c是告诉cl只编译源文件,不用链接。因为/ML是缺省选项,所以上述命令也相当于: cl /c /ML main.c 。如果没什么问题的话(要出了问题才是活见鬼!当然除非你的环境变量没有设置好,这时你应该去VC的bin目录下找到vcvars32.bat文件然后运行它。),当前目录下会出现一个main.obj文件,这就是我们可爱的目标文件。随便用一个文本编辑器打开它(是的,文本编辑器,大胆地去做别害怕),搜索"defaultlib"字符串,通常你就会看到这样的东西: "-defaultlib:LIBC -defaultlib:OLDNAMES"。啊哈,没错,这就
是保存在目标文件中的缺省库信息。我们的目标文件显然指定了两个缺省库,一个是单线程静态版标准库libc.lib(这与/ML选项相符),另外一个是oldnames.lib(它是为了兼容微软以前的C/C++开发系统)。
VC的链接器是link.exe,因为main.obj保存了缺省库信息,所以可以用
link main.obj libc.lib
或者
link main.obj
来生成可执行文件main.exe,这两个命令是等价的。但是如果你用
link main.obj libcd.lib
的话,链接器会给出一个警告: "warning LNK4098: defaultlib "LIBC" conflicts with use of other libs; use /NODEFAULTLIB:library",因为你显式指定的标准库版本与目标文件的缺省值不一致。通常来说,应该保证链接器合并的所有目标文件指定的缺省标准库版本一致,否则编译器一定会给出上面的警告,而LNK2005和LNK1169链接错误则有时会出现有时不会。那么这个有时到底是什么时候?呵呵,别着急,下面的一切正是为喜欢追根究底的你准备的。
建一个源文件,就叫mylib.c,内容如下:
/* mylib.c */
#i nclude
void foo()
{
printf("%s","I am from mylib!\n");
}
用
cl /c /MLd mylib.c
命令编译,注意/MLd选项是指定libcd.lib为默认标准库。lib.exe是VC自带的用于将目标文件打包成程序库的命令,所以我们可以用
lib /OUT:my.lib mylib.obj
将mylib.obj打包成库,输出的库文件名是my.lib。接下来把main.c改成:
/* main.c */
void foo();
int main()
{
foo();
return 0;
}
用
cl /c main.c
编译,然后用
link main.obj my.lib
进行链接。这个命令能够成功地生成main.exe而不会产生LNK2005和LNK1169 链接错误,你仅仅是得到了一条警告信息:"warning LNK4098: defaultlib "LIBCD" conflicts with use of other libs; use /NODEFAULTLIB:library"。我们根据前文所述的扫描规则来分析一下链接器此时做了些啥。
一开始E、U、D都是空集,链接器首先扫描到main.obj,把它加入E集合,同时把未解析的foo加入U,把main加入D,而且因为 main.obj的默认标准库是libc.lib,所以它被加入到当前输入文件列表的末尾。接着扫描my.lib,因为这是个库,所以会拿当前U中的所有符号(当然现在就一个foo)与my.lib中的所有目标模块(当然也只有一个mylib.obj)依次匹配,看是否有模块定义了U中的符号。结果 mylib.obj确实定义了foo,于是它被加入到E,foo从U转移到D,mylib.obj引用的printf加入到U,同样地, mylib.obj指定的默认标准库是libcd.lib,它也被加到当前输入文件列表的末尾(在libc.lib的后面)。不断地在my.lib库的各模块上进行迭代以匹配U中的符号,直到U、D都不再变化。很明显,现在就已经到达了这么一个不动点,所以接着扫描下一个输入文件,就是libc.lib。链接器发现libc.lib里的printf.obj里定义有printf,于是printf从U移到D,而printf.obj被加入到E,它定义的所有符号加入到D,它里头的未解析符号加入到U。链接器还会把每个程序都要用到的一些初始化操作所在的目标模块(比如crt0.obj等)及它们所引用的模块(比如malloc.obj、free.obj等)自动加入到E中,并更新U和D以反应这个变化。事实上,标准库各目标模块里的未解析符号都可以在库内其它模块中找到定义,因此当链接器处理完libc.lib时,U一定是空的。最后处理libcd.lib,因为此时U已经为空,所以链接器会抛弃它里面的所有目标模块从而结束扫描,然后合并E中的目标模块并输出可执行文件。
上文描述了虽然各目标模块指定了不同版本的缺省标准库但仍然链接成功的例子,接下来你将目睹因为这种不严谨而导致的悲惨失败。
修改mylib.c成这个样子:
#include
void foo()
{
// just a test , don"t care memory leak
_malloc_dbg( 1, _NORMAL_BLOCK, __FILE__, __LINE__ );
}
其中_malloc_dbg不是ANSI C的标准库函数,它是VC标准库提供的malloc的调试版,与相关函数配套能帮助开发者抓各种内存错误。使用它一定要定义_DEBUG宏,否则预处理器会把它自动转为malloc。继续用
cl /c /MLd mylib.c
lib /OUT:my.lib mylib.obj
编译打包。当再次用
link main.obj my.lib
进行链接时,我们看到了什么?天哪,一堆的LNK2005加上个贵为"fatal error"的LNK1169垫底,当然还少不了那个LNK4098。链接器是不是疯了?不,你冤枉可怜的链接器了,我拍胸脯保证它可是一直在尽心尽责地照章办事。
一开始E、U、D为空,链接器扫描main.obj,把它加入E,把foo加入U,把main加入D,把libc.lib加入到当前输入文件列表的末尾。接着扫描my.lib,foo从U转移到D,_malloc_dbg加入到U,libcd.lib加到当前输入文件列表的尾部。然后扫描 libc.lib,这时会发现libc.lib里任何一个目标模块都没有定义_malloc_dbg(它只在调试版的标准库中存在),所以不会有任何一个模块因为_malloc_dbg而加入E,但是每个程序都要用到的初始化模块(如crt0.obj等)及它们所引用的模块(比如malloc.obj、 free.obj等)还是会自动加入到E中,同时U和D被更新以反应这个变化。当链接器处理完libc.lib时,U只剩_malloc_dbg这一个符号。最后处理libcd.lib,发现dbgheap.obj定义了_malloc_dbg,于是dbgheap.obj加入到E,它里头的未解析符号加入U,它定义的所有其它符号也加入D,这时灾难便来了。之前malloc等符号已经在D中(随着libc.lib里的malloc.obj加入E而加入的),而dbgheap.obj又定义了包括malloc在内的许多同名符号,这引发了重定义冲突,链接器只好中断工作并报告错误。
现在我们该知道,链接器完全没有责任,责任在我们自己的身上。是我们粗心地把缺省标准库版本不一致的目标文件(main.obj)与程序库 (my.lib)链接起来,导致了大灾难。解决办法很简单,要么用/MLd选项来重编译main.c;要么用/ML选项重编译mylib.c。
在上述例子中,我们拥有库my.lib的源代码(mylib.c),所以可以用不同的选项重新编译这些源代码并再次打包。可如果使用的是第三方的库,它并没有提供源代码,那么我们就只有改变自己程序的编译选项来适应这些库了。但是如何知道库中目标模块指定的默认库呢?其实VC提供的一个小工具便可以完成任务,这就是dumpbin.exe。运行下面这个命令
dumpbin /DIRECTIVES my.lib
然后在输出中找那些"Linker Directives"引导的信息,你一定会发现每一处这样的信息都会包含若干个类似"-defaultlib:XXXX"这样的字符串,其中XXXX便代表目标模块指定的缺省库名。
知道了第三方库指定的默认标准库,再用合适的选项编译我们的应用程序,就可以避免LNK2005和LNK1169 链接错误。喜欢IDE的朋友,你一样可以到 "Project属性" -> "C/C++" -> "代码生成(code generation)" -> "运行时库(run-time library)" 项下设置应用程序的默认标准库版本,这与命令行选项的效果是一样的。
终极解决办法:
在 Project/Setting/Link/General中的 Project Options: 加入 /FORCE:MULTIPLE即可。
来源:LNK2005 产生原因及解决方法-相当详细!(转载)
2008年2月1日星期五
VC++,指针对象与对象
void f(){
}
指针的销毁:
Person p;
p.age = 27;
p.name = "Winnetou";
Person *p_p = &p; // pointer to a Person
p_p->age = 32; // overwrites Winnetou's age
p_p->name = "Old Shatterhand";
// equivalently:
(*p_p).age = 32;
(*p_p).name = "Old Shatterhand";
}
指针的销毁:
(1)指针变量没有被初始化。任何指针变量刚被创建时不会自动成为NULL指针,它的缺省值是随机的,它会乱指一气。所以,指针变量在创建的同时应当被初始化,要么将指针设置为NULL,要么让它指向合法的内存。例如
char *p = NULL;
char *str = (char *) malloc(100);
(2)指针p被free或者delete之后,没有置为NULL,让人误以为p是个合法的指针。参见7.5节。
(3)指针操作超越了变量的作用范围。这种情况让人防不胜防,示例程序如下:
class A
{
public:
void Func(void){ cout << “Func of class A” << endl; }
};
void Test(void)
{
A *p;
{
A a;
p = &a; // 注意 a 的生命期
}
p->Func(); // p是“野指针”
}
函数Test在执行语句p->Func()时,对象a已经消失,而p是指向a的,所以p就成了“野指针”。但奇怪的是我运行这个程序时居然没有出错,这可能与编译器有关。
订阅:
博文 (Atom)